Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PurposeTo determine the feasibility of simultaneous multi‐slice (SMS) real‐time MRI (RT‐MRI) at 0.55T for the evaluation of cardiac function. MethodsCardiac CINE MRI is routinely used to evaluate left‐ventricular (LV) function. The standard is sequential multi‐slice balanced SSFP (bSSFP) over a stack of short‐axis slices using electrocardiogram (ECG) gating and breath‐holds. SMS has been used in CINE imaging to reduce the number of breath‐holds by a factor of 2–4 at 1.5T, 3T, and recently at 0.55T. This work aims to determine if SMS is similarly effective in the RT‐MRI evaluation of cardiac function. We used an SMS bSSFP pulse sequence with golden‐angle spirals at 0.55T with an SMS factor of three. We cover the LV with three acquisitions for SMS, and nine for single‐band (SB). Imaging was performed on 9 healthy volunteers and 1 patient with myocardial fibrosis and sternal wires. A spatio‐temporal constrained reconstruction is used, with regularization parameters selected by a board‐certified cardiologist. Images were quantitatively analyzed with a normalized contrast and an Edge Sharpness (ES) score. ResultsThere was a statistically significant 2‐fold difference in contrast between SMS and SB and no significant difference in ES score. The contrast for SMS and SB were 13.38/29.05 at mid‐diastole and 10.79/22.26 at end‐systole; the ES scores for SMS and SB were 1.77/1.83 at mid‐diastole and 1.50/1.72 at end‐systole. ConclusionsSMS cardiac RT‐MRI at 0.55T is feasible and provides sufficient blood‐myocardium contrast to evaluate LV function in three slices simultaneously without any gating or periodic motion assumptions.more » « less
-
High‐dimensional multinomial regression models are very useful in practice but have received less research attention than logistic regression models, especially from the perspective of statistical inference. In this work, we analyze the estimation and prediction error of the contrast‐based ‐penalized multinomial regression model and extend the debiasing method to the multinomial case, providing a valid confidence interval for each coefficient and value of the individual hypothesis test. We also examine cases of model misspecification and non‐identically distributed data to demonstrate the robustness of our method when some assumptions are violated. We apply the debiasing method to identify important predictors in the progression into dementia of different subtypes. Results from extensive simulations show the superiority of the debiasing method compared to other inference methods.more » « less
-
Abstract PurposeTo develop a robust single breath‐hold approach for volumetric lung imaging at 0.55T. MethodA balanced‐SSFP (bSSFP) pulse sequence with 3D stack‐of‐spiral (SoS) out‐in trajectory for volumetric lung imaging at 0.55T was implemented. With 2.7× undersampling, the pulse sequence enables imaging during a 17‐s breath‐hold. Image reconstruction is performed using 3D SPIRiT and 3D l1‐Wavelet regularizations. In two healthy volunteers, single breath‐hold SoS out‐in bSSFP was compared against stack‐of‐spiral UTE (spiral UTE) and half‐radial dual‐echo bSSFP (bSTAR), based on signal intensity (SI), blood‐lung parenchyma contrast, and image quality. In six patients with pathologies including lung nodules, fibrosis, emphysema, and air trapping, single breath‐hold SoS out‐in and bSTAR were compared against low‐dose computed tomography (LDCT). ResultsSoS out‐in bSSFP achieved 2‐mm isotropic resolution lung imaging with a single breath‐hold duration of 17 s. SoS out‐in (2‐mm isotropic) provided higher lung parenchyma and blood SI and blood‐lung parenchyma contrast compared to spiral UTE (2.4 × 2.4 × 2.5 mm3) and bSTAR (1.6‐mm isotropic). When comparing SI normalized by voxel size, SoS out‐in has lower lung parenchyma signal, higher blood signal, and a higher blood‐lung parenchyma contrast compared to bSTAR. In patients, SoS out‐in bSSFP was able to identify lung fibrosis and lung nodules of size 4 and 8 mm, and breath‐hold bSTAR was able to identify lung fibrosis and 8 mm nodules. ConclusionSingle breath‐hold volumetric lung imaging at 0.55T with 2‐mm isotropic spatial resolution is feasible using SoS out‐in bSSFP. This approach could be useful for rapid lung disease screening, and in cases where free‐breathing respiratory navigated approaches fail.more » « less
-
Rechargeable secondary batteries, widely used in modern technology, are essential for mobile and consumer electronic devices and energy storage applications. Lithium (Li)‐ion batteries are currently the most popular choice due to their decent energy density. However, the increasing demand for higher energy density has led to the development of Li metal batteries (LMBs). Despite their potential, the commonly used liquid electrolyte‐based LMBs present serious safety concerns, such as dendrite growth and the risk of fire and explosion. To address these issues, using solid‐state electrolytes in batteries has emerged as a promising solution. In this Perspective, recent advancements are discussed in ionic covalent organic framework (ICOFs)‐based solid‐state electrolytes, identify current challenges in the field, and propose future research directions. Highly crystalline ion conductors with polymeric versatility show promise as the next‐generation solid‐state electrolytes. Specifically, the use of anionic or cationic COFs is examined for Li‐based batteries, highlight the high interfacial resistance caused by the intrinsic brittleness of crystalline ICOFs as the main limitation, and presents innovative ideas for developing all‐ and quasi‐solid‐state batteries using ICOF‐based solid‐state electrolytes. With these considerations and further developments, the potential for ICOFs is optimistic about enabling the realization of high‐energy‐density all‐solid‐state LMBs.more » « less
-
Abstract Contemporary whole-body low-field MRI scanners (< 1 T) present new and exciting opportunities for improved body imaging. The fundamental reason is that the reduced off-resonance and reduced SAR provide substantially increased flexibility in the design of MRI pulse sequences. Promising body applications include lung parenchyma imaging, imaging adjacent to metallic implants, cardiac imaging, and dynamic imaging in general. The lower cost of such systems may make MRI favorable for screening high-risk populations and population health research, and the more open configurations allowed may prove favorable for obese subjects and for pregnant women. This article summarizes promising body applications for contemporary whole-body low-field MRI systems, with a focus on new platforms developed within the past 5 years. This is an active area of research, and one can expect many improvements as MRI physicists fully explore the landscape of pulse sequences that are feasible, and as clinicians apply these to patient populations.more » « less
-
PurposeTo demonstrate the feasibility of high‐resolution morphologic lung MRI at 0.55 T using a free‐breathing balanced steady‐state free precession half‐radial dual‐echo imaging technique (bSTAR). MethodsSelf‐gated free‐breathing bSTAR (TE1/TE2/TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR‐scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k‐space over multiple breathing cycles. WASP uses short‐duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory‐resolved images were reconstructed off‐line using compressed sensing and retrospective self‐gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings. ResultsThe technique provided artifact‐free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off‐resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively. ConclusionThis study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.more » « less
An official website of the United States government

Full Text Available